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Abstract

This paper deals with the problem of selecting the best population among k popu-
lations belonging to the same class of exponential family distributions through sequential
subset selection approach. We desire that the best population should be selected and
each selected population should be good. Based on the modified likelihood ratio of the
conditional frequency function of some statistics, an elimination-type sequential subset se-
lection procedure is proposed. This sequential procedure achieves the selection goal with
guaranteed probability at least P* for some prespecified value P*. At each stage, this
procedure also provides some statistical inference about an upper bound on the measure
of separation from the uiknown best population to each remaining contending popula-
tion. Finally, a modified sequential procedure to select a good population is also studied.
This modified sequential procedure achieves the goal of selecting a good population with
guaranteed probability at least P*. "' 1, . ___'
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On A Sequential Subset Selection Procedure

For Exponential Family Distributions

1. Introduction

Consider designing and analyzing an experiment for comparing k populations

7rj,..., rh. Suppose that observations can be obtained from the k populations sequen-

tially. It is often desirable to terminate sampling from a population as soon as there is

statistical evidence that it is not the best population, and this population is eliminated

from further consideration. Selection through sequential comparison with elimination pro-

vides a significant advantage. To achieve a certain accuracy, it requires, on the average,

substantially fewer samples than the fixed sample size procedures.

In sequential selection and ranking procedures, contributions have been made to select

the best population by using the indifference zone approach. The simplest formulation of

the indifference zone approach is the situation where one may wish to select only a single

population and guarantee with a prespecified probability that the selected population is

the best population provided some other condition on the parameters is satisfied, usually

an indifference zone. However, in the real situation, it is hard or not possible to specify

such a condition. Thus, a reasonable and useful approach is to derive some sequential

selection procedure to select a small subset containing the best population. Further, it is

desired that each of the selected populations should be not far from the best population.

Therefore, some statistical inference is needed to assert that each selected population is

within some prespecified distance from the best population.

In this paper, we assume that the random observations from population 7ri has a

frequency function f(x I ) of the form

f(x1O,) = exp{Q(0j)P(x) + R(x) -/3(O)}. (1.1) 

Here, P(x) and R(x) do not involve the parameter 0, while Q(O) and fl(O) do not depend I
on x. The function Q(O) is assumed to be a continuous, strictly increasing function of 0.

Define 5ij Q(O,) - Q(O,) as a measure of separation from 7ri to 7r.. This particular
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separation measure has been considered by Bechhofer, Kiefer and Sobel (1968). We call

wi the best population if 7ri is the unique population such that Q(0i) = max Q(0j). If

more than one population has this property, one of them is tagged and considered as the

best population. Since the function Q(O) is increasing in 0, the population associated

with O(k) - max 9, is the best population. We let (k) denote the index of the best
1:5j <k

population and denote the best population by 7r(k). We note that a sequential procedure

for selecting the best population from among exponential family distributions through

the indifference zone approach has been derived by Hoel and Mazumdar (1968). Perng

and Groves (1977) have also derived two sequential procedures for partitioning a set of

one-parameter exponential populations with respect to a control. Since it is assumed

that there is no prior information about the possible configurations of the measures of

separation 6,j,i,j = 1,..., k,i $ j, thus, subset selection approach is more appropriate

here. However, for the usual subset selection approach (for example, see Gupta (1965)),

the size of the selected subset is a random number, and the quality of each of the selected

populations cannot be guaranteed. In the fixed sample size case, Gupta and Santner (1973)

and Santner (1975) introduced restricted subset selection procedures in which the size of

the selected subset is at most m, where 1 < m < k - 1. In this paper, we try to control

the quality of the selected populations.

For a prespecified positive constant *, we say that population 7ri is good if Q(0(,)) -

Q(Bt ) < * and bad otherwise. Let S denote the selected subset and CS(6,) denote the

event that 7r(k) E S and 6 (k)i < P* for all 7ri E S. We desire a sequential subset selection

procedure P such that

PO{CS(6*)IP} > P* for all 0 E fl (1.2)

where P*(k - ' < P* < 1) is a preassigned probability levelandfl = {= (0j,...,8k)jf(x)

is well defined, i = 1,... , k} is the parameter space.

For this particular measure of separation b i, we consider an appropriate transforma-

tion of the random observations taken from any two populations. With this transformation,

the likelihood function of the new statistics can be factored into two pa,'ts, one of which,

obtained by a conditional argument, and termed the conditional likelihood function, is a
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function only of the parameter of interest. Based on this conditional likelihood function,

a sequential subset selection procedure is derived. This sequential subset selection pro-

cedure achieves the selection goal described above. At each stage, it also provides some

statistical inference about the bounds of separation between each remaining population

and the unknown best population. Finally a modified sequential procedure to select a

good population is also studied. This modified sequential procedure achieves the goal of

selecting a good population with guaranteed probability at least P*.

2. Some Properties Associated with Exponential Family Distributions

Let Xi,, denote the nth observation taken from population iri. It is assumed that

the random observations Xi,, n = 1, 2,... are independently distributed with the common

frequency function f(xlO),i = 1,... ,k. For each pair (i,j),1 < i,j k,i : j, let

W,,(n) = (P(X,,) - P(Xj.))/2, Zj(n) = (P(Xin) + P(Xn))/2. (2.1)

Then, (Wij(n), Zij(n)) have a joint frequency function

g(w,zlOi,Oj) = cexp{bijw + (Q(O) + Q(oj))z + a(zw) - /CO(,) - (0j)}IA(w,z), (2.2)

and given Z .(n) = z, the conditional frequency function of W i (n) is

g(wlz, ,3 ) = exp{6,jw + a(z, w) - T (z, ij)}IA(w, z), (2.3)

where

(a) a(z,w) = R(z + w) + R(z- w),
(b) .(z,6) = logfEA exp{6w + a(z, w)}dw,

(c) The set A is the support of the random vector (Wi,(n), Zij(n)), (2.4)

and A, = {wl(w,z) E A), and
(d) c is a constant such that g(w, zlOi,O) is a frequency function.

Note that for each z, (w, z) E A iff (-w, z) E A. Thus, w 6 Az if and only if -w 6 Az.

Also, a(z,w) = a(z,-w). Hence, by the definition of lk(z,b), %P(z, 6) = %(z,-b).

From (2.3), it is clear that g(wlz,bij) has exponential family distribution ant. hence

has monotone likelihood ratio property. Therefore, E6[h(W~i(n))JZjj(n)] is nondecreasing
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in 6 whenever h(w) is any -londecreasing function of w. Also, from the usual theory for the

exponential family distributions, for given Z13(n) = z, the conditional mean and variance

of W,,(n), for any 60, are:

E6. [W,,(n) IZi, (n) = z] %P -~(z, 6) W6' (Z,60),
6=60 (2.5)

Vars,,(W 1 3 (n)1IZ 1 3 (n) = z) 2 ~4(Z, 6) 41~66 (Z, 60) > 0.
1~6=6,

The following lemma can be obtained easily based on the above discussion.

Lemma 2.1. For each z belonging to the domain of the random variable Z1 3(n),

(a) TI'(z, 6) = T (z,-6b) from all 6.

4 (b) T (z, 6) is a convex function of 6.

(c) TI'(z, 6) is strictly increasing (decreasing) in 6 for all 16 E [0, oo)

(6 E (- oo, 0]), and TI'(z,O0) = inf TI'(z, 6).
6

(d) %F'6(z,60o) is strictly increasing in 6o, %P6 (z,O0) =0 and TI6 (z, -60) =-'Q6 (z,6bo).

(e) Let a,,a2 , b1 and b2 be points such that a, a2 < b2 , a, < b1 ! b2.

Then, (z,bj)-Tl(z,aj) < T~(Z,6 2 )-TI(z,a 2 )
b, -a1  2a

(f) For each fixed z, define

I(blIz) =b'P 6 (z, b) - IQ (z, b) + %Y (z, 0). (2.6)

Then, I(blz) ! 0 for all b and I(blz) > 0 if b:7$ 0.

3. A Sequential Subset Selection Procedure P(H.6*

Let V* > 0 be the prespecifled value used to define the event CS(6*). Let 11(y) be a

distribution function satisfying Condition A.

Condition A: H(y) is a distribution function defined on the interval [0,6'] such that for

some constant co E (0,6*) the interval [0, col is contained in the support of H.

5
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For each a > O,n > 1 and each pair (i,j), define

L =(n,a) = (3.1)
fi g(W (m) I Z, (m), - a)

M=1

where g(wjz,5) is the conditional frequency function defined in (2.3). We now define a

sequential subset selection procedure P(H, 6 *) as follows:

Let So = {7rj,... ,rAk}. For each n > 1, define

k-i
Sn = {7ri G Sn-lLji(n,O) < k- 1 for all 7rj E Sn-1 - {7ri}}. (3.2)

That is, Sn is the set of contending populations up to stage n. At stage n, population

irr E Sn is labelled as good if Lij(n,6*) > - for all jrk E Sn - {ir }. Let ISnI denote

the size of the set Sn. If either ISI = 1 or all the populations in S, have been labelled as

good then the procedure terminates and we take S = S,, as the selected subset; otherwise,

we go to the next stage. The procedure is continued in this way.

Termination with Probability One

In order to apply the sequential selection procedure P(H,6*), we need to assert that

this procedure terminates with probability one. As described above, the distribution func-

tion H(y) is chosen to satisfy Condition A. It is also assumed that Condition B holds true,

where

Condition B: %P6 (z,b) M(b) a.e. (Z~i(n)) for each b > 0, where M(.) is bounded on the

interval [a, oo) for each a > 0. That is, there is a finite function q(.) such that M(b) < q(a)

for all b > a > 0.

It is not hard to verify that many exponential family distributions, including normal,

exponential, binomial, satisfy Condition B.

To prove the procedure P (H, b6*) terminating with probability one, it suffices to show

that for any two populations, say 7r, and 7r2 , with probability one the event E occurs,

where E is the event that either one of them will be eliminated (in comparison with the
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other) or both of them are labelled as good. Without loss of generality, it is assumed that

01 > 02. For simplicity, in the following of this section, we let k = 2 and 0 = (1, 02).

Defining stopping times T and T2 as follows:

11 = max{Tii,j = 1,2, i 54 (3.3)

where
w ej= m nIL (n, *) > k- 1 (34)

and

T2 = min nIL12(no) > -- (3.5)

That is, T1 is the random time at which both 7r, and 7r2 have been labelled as good

(assuming no elimination) and 72 is the random time at which 7r2 is eliminated by 7r,

(assuming that ir 2 cannot eliminate 7r, and there is no labelling for good). Note that

{T, < o0 or T 2 < oo} c E. Thus, it suffices to prove that PO {T < o or T'2 < oo} = 1 for

all possible configurations of the parameter 0.

We have the following two lemmas. The proofs are given in the Appendix.

Lemma 3.1. Under Conditions A and B, PO{T 2 < oo} = 1 if 01 > 02.

Lemma 3.2. Under Condition A, P0 {T < o} = 1 if 01 = 02.

Thus, one can see under Conditions A and B that Po{T 1 < oo or T'2 < o} = 1

for all possible configurations of the parameter 0. Hence, under Conditions A and B, the

sequential subset selection procedure P(H, V) terminates with probability one.

4. Probability of A Correct Selection

For each n > 1, let Yj(n) denote the a-field generated by the random variables

(Wij(m),Zij(m),m 1,2,... ,n). Then, we have the following lemma.

Lemma 4.1. Eo[Lij(n,6j,)IFj(n - 1)] = L+j(n- 1, bj) for all n > 1 and 0 E fi.
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Proof: Note that

Ea[Lij(n,6iji)I It(n - 1)]

= E? I exp (y + W) W(m) - - '(Zi, (M),6,j) dH(y)I i(n - 1)]

n-I n-1

=- exp I(y + bi) E Wi1 3(M) - E [W(Z,,(m),y) -IFZjM'j A 1 (,y,n)dH(y),
~ M---1 M =1

where Ai(j,y,n) = Eo[exp{(y + 6,i)Wii(n) - %I(Zij(n),y) + %F(Zi(n),6,i)}] and the

second equality is obtained from Fubini's theorem and by the independence between

(Wi(n), Z13(n)) and Y1j(n - 1). Now,

Aij (?,y,n) = EO [E6ij[exp{(y + 6ji) Wij (n) - %k (Zij(n),y) + q, (Zi(n),ji)}IZj(n)]] = 1

and therefore, the result follows.

Theorem 4.1. Let {Sn} be the sequence of the sets of contending populations determined

by the sequential subset selection procedure P(H,6*) through (3.2). Then, for all 0 E n7.

PO{Li(k)(n,6( )i) < 1 -P for all ri E Sn-I - {7r(k)} for all n > 1} ?_ P*,

provided that Conditions A and B hold.

Proof: Note that for any ? 1E1.

k-1i
Pe{Li(k)(n,6 (k),j) < 1 - I for all ri E Sn- 1 - {7r(k)} for all n > 1}

4 k-1
1 - PO{L(k)(n, 6 (k),) > k for some 7ri ESn - {lr(k)} for some n > 1}lP*

k k-1

> 1 - E PO{Lj(k)(n,b(k),,) > k for some n > 1). (4.1)
- 1-P*

By Lemma 4.1, {Lj(k)(n,(k),i),(k)(n);n > 1} forms a nonnegative martingale.

Thus, from a lemma of Robbins and Siegmund (1973), for i (k),

k-1 _-P*

Pe{Lj(k)(n,b(k),i) > for some n > 1} k- (4.2)

8
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Then by (4.1) and (4.2), the result follows.

For each pair (i,j) and a > 0, let Bi(n,a) denote the event that L,,(n,a) < kI o .

That is B 3(n, a) = {Li 3(n, a) < _--A . The following result is very helpful for obtaining

some sequential estimate of an upper bound on b(k),i, i - 1,2,..., k.

Lemma 4.2. Let a and b be any two nonnegative values such that b > a > 0. Then,

Bij(n,b) C Bij(n,a) for all n > 1. (4.3)

Proof: Suppose that the statement of (4.3) is not true. Then, there exists some n > 1

such that
k-i

L13(n'b) < 1- p - L1 (n,a). (4.4)

By (3.1), we have

L1i(n, b) = L13(n, a) exp{(b - a) E W,,(m) + 1: [(Z~i(m), b) - IF (Zi,(m), a)]}. (4.5)

(4.4) and (4.5) together imply that

E Wj(m)< b-a : [T (Z, 3(m),b) - IF(Zi3(m,,)]. (4.6)
M=1 =

Then, by (4.4) and (4.6),

k-i

<L1 3 (n, a)

= f exp (y + a) Wi(m) + Y.) - (Zj(m),y) dH(y) (4.7)

< exp -(y + a) Q 3i(m,y,a,b) dH(y),

where

0 Q ,(m, y, a, b) ''(Z 1 (m),y) - 4(ZjC(m),a) P '4(Z 1,(m), -a) - I(Z 2,j(m), -b)
y- (-a) (-a) -(-b)

9



By Lemma 2.1 and the fact that -b < -a < y for each y E [O,b*], we have, for each

m = 1,2, ... ,n, Q (m, y, a, b) 0. With this fact and from (4.7), we obtain 1 < k-1 <
" P"

Lij(n, a) < 1, which is a contradiction. Therefore, B 1j(n, b) c Bi,(n, a) for all n > 1 when

b>a>0.

An immediate result of Lemma 4.2 is:

n n

Bij(m,b) c n Bij(m,a) for all n > 1 whenever b > a > 0. (4.8)

For each n > 1, 7,r rj E S,_i 0 j, define Cij(n) and D1j(n) as follows:

Cij(n) = {a > OLij(n,a) <-k }k . (4.9)

{supC(n) ifCj(n) 00,
Dij(n) if C13 (n) €, (4.10)

where € denotes the empty set. Also, let Dii(n) = 0. From Lemma 4.2, if Dij(n) > 0,

then, Li 3(n,a) < k -' for all a E [0, Do.(n)) and L1i(n,b) - I for all b_> D-(n).

For each n > 2, if ri E Sn,, define

Di(n)= min ( max Dij(m)). (4.11)

If 7ri S, - 1 , let n, max{ml[ri G Sm-1} and Di(n) Di(ni).

By the definition of Di(n), for each i = 1,...,k,f{DL(n)} is a nonincreasing sequence

and bounded below by zero. The value Di(n) will be used at stage n as an estimator of

an upper bound of b(k)i. We note that the technique used to define Di(n) is from Hsu and

Edwards (1983) for location parameter model.

Theorem 4.2. L et Li) (n,a),Sn and Di(n),n > 1 be those defined in (3.1), (3.2) and (4.1),

respectively. Then

{L(k)(n,6(k),) < for all ri C Sn._ - {7r(k)} for all n > 1}

C{7r(k) E S and b(k)i < D1 (n) for all 7ri C S,._1 for all n > 1}.

10



0

Proof: By Lemma 4.2 and the fact that 6 (k)i _ 0, we have
k-i

{L(k) (n,(),)<1 -<---- for all 7ri E Sn-1 - {r(k)) for all n > 1}
k-i

c{Li(k)(n,O) < 1 - and 6 (k)i < Di(k)(n) for all 7ri E Sn-1 - {7r(k)} for all n > 1}

C{lr(kt) E S and 6 (k)i < Di(k)(n) for all iri E Sn-E - {7r(k)} for all n > 1} (4.12)

C{7r(k) E S and 6 (k)i max Dii(n) for all 7ri E S, -1 for all n > 1}

={7r(k) E S and 6 (k)i Di(n) for all iri E S,-_ for all n > 1}.

An immediage consequence of Theorems 4.1 and 4.2 is that for all 0 E 1, under

Conditions A and B.

Po{r(k) E S and 6 (k)i < Di(n) for all 7ri G Sn_1 for all n > 1} _> P*. (4.13)

This result provides a sequential comparison inference, with confidence level at least P*,

as follows: simultaneously, at each stage n, the best population is not eliminated and the

separation from the unknown best population to each contending population, say 7ri, up to

stage n, is not larger than the value Di(n) for all n > 1. Another consequence of Theorems

4.1 and 4.2 is that when the sequential selection procedure P (H, 6*) terminates, the event

of a correct selection CS(6*) is guaranteed with probability at least P*. We state this

result as a theorem as follows:

Theorem 4.3. Let P (H, 6*) be the sequential subset selection procedure defined in Section

3. Then, when the selection procedure P(H, 6*) terminates, that PO{CS(6*)IP(H,6*)} >
P* holds for all 0 E Q.

Proof: Note that when the sequential selection procedure P(H, 6*) terminates, then either

IsI = 1 or all the populations in S must have been labelled as good at some stage. Let

N be the stopping time of the sequential selection procedure P(H, 6*) and when ISI > 2,

for each 7ri E S, let Ni denote the first time at which 7ri was labelled as good. Hence,

L, (Nib *) > k-i for all 7rj E SN, - {7ri}. By the definition of Dij(n) and Lemma 4.2,

Dj(N,) < 6" for all 7rj E SN, - {7r}, and thus, Di(k)(Ni) < 6 if 7r(k) E SN, - {7ri}. Also,

11



note that S = SN and when IS[ _! 2, Ni _5 N for all ?rj E S. Now

{?r(kt) E S and b(k)i:S Di(k)(n) for all ri E S.- 1 - { r(k)} for all n > 1} (4.14)

c{lr(k) E S and ISI = 1} U {w(k) E S, IS! >_ 2 and 6 (k)i _ Di(k)(Ni) for all 7ri G S - {lr(k)}}

(since S C Sn_ for all n and Ni < N for all 7ri E S)

C{ r(k) E S and ISI = 1} u {(k) E S, I _> 2 and 6(k)i < b for all 7ri E S - {lr(k)}}

=CS( *).

Then, by (4.14), (4.12) and Theorem 4.1, we have that for all 0 E fl,

Pg{CS(6*)IP(H,b*)} > P*.

5. A Sequential Procedure for Selecting a Good Population

Consider a selection problem among k populations. In most applications, an exper-

imenter is usually content with selecting a good population. Kao and Lai (1980) has

studied the problem of selecting a good population among k normal populations through

sequential approach. For our problem, with this selection goal, what we want is in fact a

selection procedure having the property that

Po{7ri is selected and 6 (k)i _ V*} > P* for all 0 E l2. (5.1)

Also, the procedure should stop as soon as we are confident that a good population has

been found. A sequential selection procedure achieving this selection goal can be obtained

from P(H,6*) with a little modification on its stopping strategy. We now describe it as

follows.

* Let {S,} be the sequence of sets of remaining populations defined in (3.2). For each

7r E S, ,ri is labelled as good if Lii(n, b*) > k - 1 for all 7ri E S, - {7r}. The procedure

terminates at stage n as soon as one of the populations in Sn has been labelled as good.

If there is only one population in Sn having been labelled as good, we then select this

population as a good population. If more than one population have been labelled as good,

12
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we usually select the one with the smallest Di (n) value. We denote this modified sequential

selection procedure by P'.

The following theorem guarantees the desired confidence level of selecting a good

population by applying the selection procedure P'.

Theorem 5.1. Let P' be the sequential selection procedure defined above. Then, PO{7r1 is

selected and 6(k)j _ 6*IP} _> P* for all 0 E 0l, provided Conditions A and B hold.

Note: The argument for the proof of this theorem is similar to that of Theorem 7 of Kao

and Lai (1980). For completeness, the proof is given as follows.

Proof: Let A(0) = {L,(k)(n,6 k(,)) < k-1 for all 7ri E Sn_. - {r(k)} for all n >}. Then by

Theorem 4.1, P 0{A()} > P* for all 0 E fl. We note that on the event A(0), by Lemma 4.2,

L_(k)(n,O) < k-i for all irj E Sn 1 - {r(k)} for all n > 1. Therefore, 7r(k) can never be

eliminated in comparison with other populations at any stage. Let B(q) = {7rj 11(,:)i > 6 }.

That i3, B(q) is the set of bad populations. It suffices to show that on the event A(9), any

population in B(q) cannot be labelled as good when the procedure P' terminates.

Let M be the stopping time of the sequential selection procedure P'. On A(q), since

r(k ) can never be eliminated prior to the stopping time M, then r() E Sn for all 1 < n <

M. Moreover, for each 7ri E B(q), 6 (k)i > V* > 0 and on A(q),Lj(k)(n,6(k)) < k-1 for

all 1 < n < M. Then by Lemma 4.2, L(k)(n,,*) < k- which means that ir cannot be

labelled as good. Hence, 7ri cannot be selected as a good population. Therefore, for all

0 E f, we have P0{rj is selected and 6 (k)i <- -I*1'} > P'.

Appendix

Proof of Lemma 3.1. The proof is analogous to that of Lemma 1 of Pollak and Siegmund

(1975). Note that 612 > 0 since 01 > 02. For convenience, in the following, we let

W(m) = W 12 (m),Z(m) = Z 2 (M),A(m,a,b) = %P(Z1 2 (m),a) - * (Z1 2(M),b),6o = 612 and

k-1 .Then,0 -1-P*" n n
L 12 (7,O) = exp y? W(m) - A(mY,0) dH(y).

13



For each n, define T 2n = min{T 2 , n} - 1, so that T2n + 1 is a bounded stopping time.

Case 1. When 6 n < co where co is given in Condition A.

From the definition of T2 , we have

log a > log L12 (T2n, 0)
T2. T2.

= 6o W(m) - E A(m,6o,O)
m=1 m=1

+ log exp (y - 6o) E W(m) - E A(m,y, 6o) dH(y) (A.1)
n m=1 m=- -1

6o E [W(m) _ 'k6(Z m),6o)] - Z [6oT(Z m),6o) - A(m, bo,0)]
M=1 m=1

T2 n T2 n
+ log exp (-6o) E W(m)- E A(m,y,6o) dH(y).

- J1 =

By using Taylor's expansion,

A(m, y,6o) = (y - bo) T&(z, o) + -(y - 6o)"6(Z, (A.2)

where C = C(z,y,6o) is a value between y and 6o. By Condition B, we can find an e so
small that fy- bot W 6 (Z(m),C) 1 a.e. for all y e (6o - A,6o + E). We then obtain

log exp (9- o) E W(m) - A(m,y, 6o) dH(y)

log f I <eexp (Y - 6) E [W(m) - T5(Z(m), 6o)] E T n dH(y) (A.3)

> log H(6 0 - c,6 0 + c) + (d - 60) E [W(m) - , 6(Z(m), o)] - 6 T2n,

m=1

where H(60 - c, 6 o + c) = fly 61< dH(y),d = fl _6o1ydH(y)/H(6o - E,6o + e), and the
second inequality is obtained by Jensen's inequality. From (2.6), (A.1) and (A.3), we have

T2~ .T2 n

>1 [I(6oIZ(m)) - El + d Z [W(m) - T26(Z(m),6o)]
r=1 m=1

< loga - log H(6o - E,6o + c). (A.4)

14



Therefore,

1. +1T1.+1

E [I(6oIZ(mn)) - cl + d 1: [W(m) - 'I's(Z(m),o)]
M=1 m=1

5 log a- log H(bo - c, bo +e) + I(bojZ(T2 . + 1)) - e (A.5)

+ d[W(T2,, + 1) - 4I'6 (Z(T2 n + 1),bo)I.

Now consider the expectation EO of both sides of (A.5). Since

E0[JW(m) - IF 6 (Z (m),bo)] EO [E6. W(m) - i 6 (Z (m),bo) I Z (m)]

E0 [E6,[IW(m) - I6,(Z(m),o)I2 Z(mn)]]}

{EO['Fb(Z(m),6o)j}f

then,

E0 [W (m) - T 6 (Z (m), o)J I 0 [ E,5 [W (m) - 416 (Z (m), bo)[IZ (m))

Also,

0 < E0 [I(6ojZ(m))] E0[6o~i6(Z(m),65o)j = oE9JW(m)j < oc.

Thus, by Wald's lemma, E0  E ('W(m) - %I'6(Z(n),bo)I] =0, and

* 1M=

EO E lI(6o[Zm)- [L7(Tmn 1)] x[E0[I(boIZ(1))] E].

Also, by Schwarz inequality,

E0 [W(T 2 n + 1) - ''6 (Z(T 2 n + i),bO))

SE 0 [jW(Tmn +i 1) - '4'(Z(T2 n + 1),60)11

f E0 [(W(1) _ V 8 (Z (1), 60)) 21[E0 (T2,, + 1)1})1i

M Af(bo)[E0 (T2 n + 1jl

15
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Similarly,
EOII(boIZ(T2 ,, + 1)].- 6cEO['j 6(Z(T2,, + 1)160)1

- oEe(W(T2. + 1)]

< o{EeI[W 2 (I)]EO[T 2 ,, +1}2

Therefore,
{Ee[I(boIZ(1))I - c} X {EO[T 2 . + 11)

2 + dM'2(bo)} x {EO T2 , + 11

-logH(o -E, 60o+E) + log a,

and so,

{EeII(bo1Z(1))I - e} x {EOT 2 ,, + 11

{60 [EO(W 2()I 2+dM'2(bo)} -log H(&0 - c, & +) + log a. (A.6)

Now, since I(6 0 1Z(i)) is positive, e can be chosen so small that EOEI(6o)IZ(1)] - E > 0.

While the right-hand-side of (A.6) is independent of n, so, as n - oc, the left-hand-side

of (A.6) is still bounded. Hence E0 (T2) < oo, which implies that Pe{T2 < 00} =1

Case 2. When bn > co. From (A.1), we also have

T 2 ,.+l T2 , +I T 2 . + I

E I(coIZ(m)) + d 1: IW(m) - T8'(Z(m),bo)] + E {d[T~6 (Z(m),bo) - '%'(Z(m),co)] - 61
m= M=1m=1

<log a - log H(co - c,co + c) + d[W(T 2 n + 1) - 'I'6(Z(T2 ,, + 1),bo)]

+ d[TI6 (Z(T2n + 1), bO) - TI(Z(T 2 ,, + 1), CO)].

Following an argument analogous to the above, we have E0 [T2] <00o and so

* P0 {T 2 <oo00)

Proof of Lemma 3.2. Note that 12 = 0 since 01 = 2. Now,

V n n
L12(n 6.) exp (y+ V) Y3 W(m) + I:A(, )dH()

By Jensen's inequality, we have

n- 1 log L 1 2 (n,b*) ! n' 1 : Vm,, (A.7)
m=1

16



where Vm --, {(y + *)W(m) + A(m,6*,y)}dH(y),m = 1,2,...,n, are lid. By Lemma

2.1 and the fact that 612 = 0, then,

E O[Vm =f E0 [(Z(rm),6*) - T(Z(rm),y)]dH(y)
'o"

Sfo E 0 [q1(Z(rn),6*) - '(Z(m),co)jdH(y)

>0.

By strong law of large numbers and by (A.7) and (A.8), we obtain lim inf n - 1 log L 12 (n, 6*)

fo ° E0 [q'(Z(m),b*)-%A(Z(m),co)]dH(y) a.e. while n- 1 log k-+ 0asn - coc. Therefore,

PO{T 1 2 < oc} = 1 when 01 = 02. Similarly P{T21 < oo} = 1 and thus P0 {T <oo} = 1

when 01 = 02.
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